A Multistep Formulation of the Optimized Lax-Wendroff Method for Non- linear Hyperbolic Systems in Two Space Variables

نویسندگان

  • Charlotte W. John
  • A. R. Gourlay
  • J. M. Varah
چکیده

Introduction. In this note we develop a multistep formulation of the optimized Lax-Wendroff method for hyperbolic systems. This scheme was derived by Strang [6], [7]. The present formulation extends in a natural way, the two-step formulation of Richtmyer [5] for systems in one-space variable. We summarise this case in the next section. One Space Dimension. We consider the first-order conservation law

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the strong stability of finite difference schemes for hyperbolic systems in two space dimensions

We study the stability of some finite difference schemes for symmetric hyperbolic systems in two space dimensions. For the so-called upwind scheme and the Lax-Wendroff scheme with a stabilizer, we show that stability is equivalent to strong stability, meaning that both schemes are either unstable or `-decreasing. These results improve on a series of partial results on strong stability. We also ...

متن کامل

Water hammer simulation by explicit central finite difference methods in staggered grids

Four explicit finite difference schemes, including Lax-Friedrichs, Nessyahu-Tadmor, Lax-Wendroff and Lax-Wendroff with a nonlinear filter are applied to solve water hammer equations. The schemes solve the equations in a reservoir-pipe-valve with an instantaneous and gradual closure of the valve boundary. The computational results are compared with those of the method of characteristics (MOC), a...

متن کامل

Investigation of Fluid-structure Interaction by Explicit Central Finite Difference Methods

Fluid-structure interaction (FSI) occurs when the dynamic water hammer forces; cause vibrations in the pipe wall. FSI in pipe systems due to Poisson and junction coupling has been the center of attention in recent years. It causes fluctuations in pressure heads and vibrations in the pipe wall. The governing equations of this phenomenon include a system of first order hyperbolic partial differen...

متن کامل

Stability analysis and error estimates of Lax-Wendroff discontinuous Galerkin methods for linear conservation laws

In this paper, we analyze the Lax-Wendroff discontinuous Galerkin (LWDG) method for solving linear conservation laws. The method was originally proposed by Guo et al. in [11], where they applied local discontinuous Galerkin (LDG) techniques to approximate high order spatial derivatives in the Lax-Wendroff time discretization. We show that, under the standard CFL condition τ ≤ λh (where τ and h ...

متن کامل

Finite-Difference Methods for Nonlinear Hyperbolic Systems

is obtained where A (u) is the Jacobian matrix of the components of / with respect to the components of u. Equation (1.2) is said to be hyperbolic if the eigenvalues of the matrix pi + 6A are real for all real numbers m, 0. Several authors have proposed finite-difference schemes for the numerical integration of (1.1) (or (1.2)). In [6], Lax and Wendroff introduced an explicit scheme which is st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010